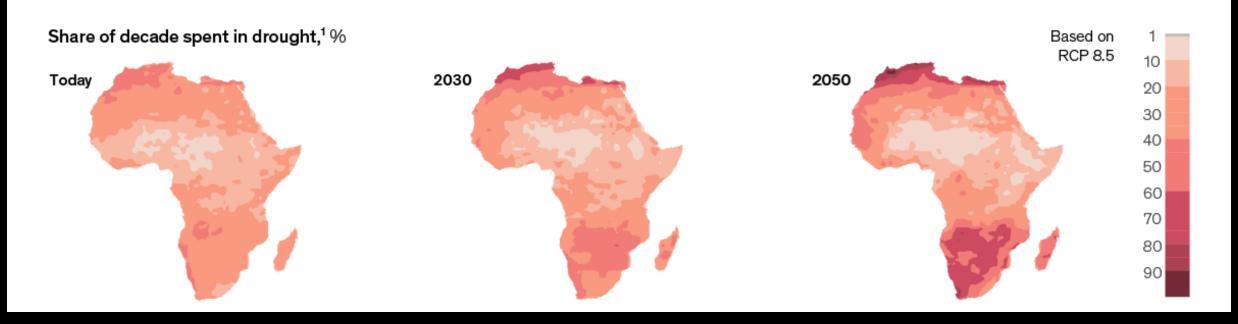
Building an Innovation Workforce in Biotechnology to Address Climate Change

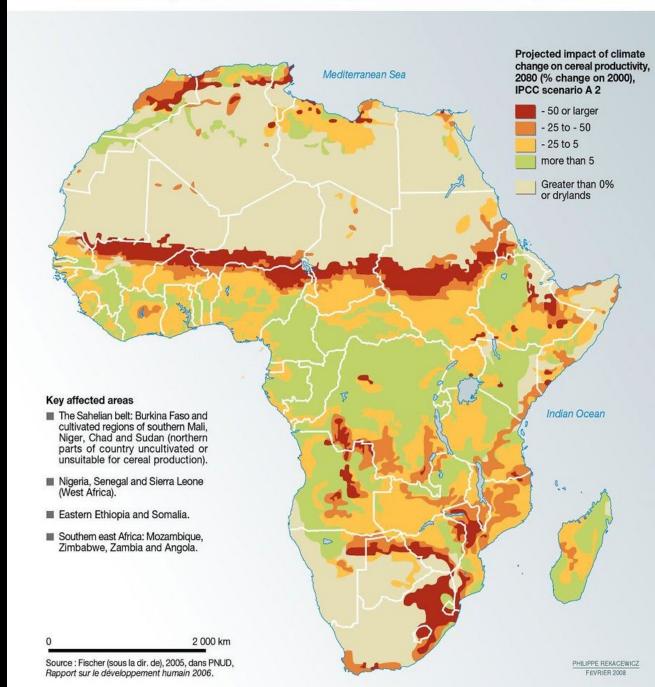

Introducing Claflin University's Online Degree Program for a Master's of Science in Biotechnology to address Climate Change

Dr. Nicholas Panasik Jr. Claflin University

npanasik@claflin.edu 803 535-5535 10/27/23

We have some Big Problems ahead of us...

Expected evolution of drought differs by region in Africa, with the most affected areas in the north and south.


--- drought will affect food supply

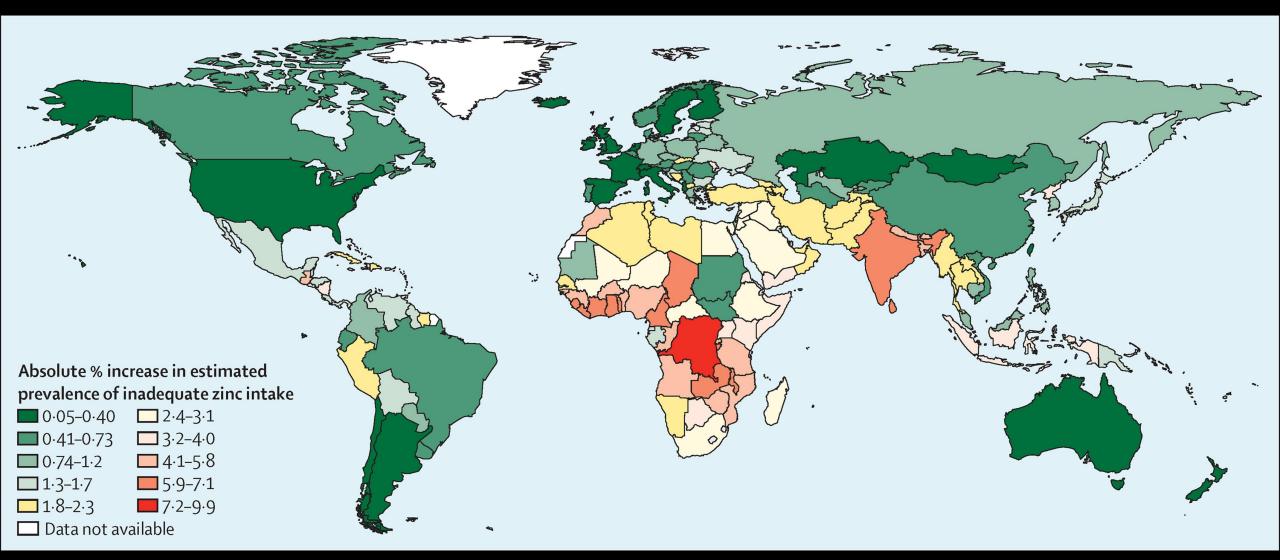
Increasing Food Insecurity

Drop in cereal productivity

- Models predict 30% rise in price

Cereal productivity in Sub-Saharan Africa under a scenario of the IPCC that shows CO₂ atmospheric concentrations a level at 520-640 ppm by 2050

Studies show that higher CO₂ reduces zinc content of crops



By 2050:

- ~175 million more people could have zinc deficiencies (more susceptible to illnesses)
- ~122 million more people could be protein deficient.

Communities relying largely on plant harvests for their nutrition will feel this most acutely.

Projections on Zinc deficiencies worldwide:

Climate Change Impacts:

Crops grown in high-drought areas that are then moved into humid storage facilities are vulnerable to fungal infections or pests

-These are Targetable by Biotechnology

Nutritional Quality of Food Decreases

Cereal and forage crops show lower protein concentrations under elevated CO₂ conditions

→ This is targetable by Biotechnology

Benefits of Biotechnology

- increase the crops yield through introducing highyielding varieties resistant to stresses
- reduce pest— associated losses
- increase the nutritional values of foods

Biotechnology landscape controlled almost exclusively by:

- the private sector
- large corporations / agribusiness
- defined by patent protection

Plan for Biotech Workforce Development

We Need to Train those Scientists now

In Africa...

In Asia...

Everywhere...

Plan for Biotech Workforce Development

We Need to Train those Scientists now

Build a Biotechnology workforce
That has the skills to meet the challenges in 20 years

Develop local expertise and Intellectual Property

Target Skills for Workforce Development

- Genetic engineering of crops to withstand drought & pests
- Development of Bio-fuels & sustainable energy production

Vaccine & therapeutics development, drug design

Claffin University

Claflin University

Master of Science In Biotechnology for Climate Change

A Masters of Science Degree Program specifically designed to teach how to *use* the science of *Biotechnology* to *mitigate/adapt to the impacts of Climate Change*

ONLIN

→ Is the only Biotechnology Program that targets climate change!

Claflin University

U.S. News and World Report Best Colleges 2022 Rankings

3rd Best Top Performers on Social Mobility

 Institutions who advance social mobility by enrolling and graduating large portions of disadvantaged students awarded Pell Grants.

Visionary Leadership

Mentoring leaders, problem solvers, & agents of change

What Sets Claflin Apart

As an HBCU We Excel in Pedagogy

- Especially for non-traditional learning styles
- Research based methods in Teaching & Learning
 - Know How to foster inclusive environments
 - Social justice
 - Experience with a worldwide audience

Claflin's Great Track Record

- 101 graduates over 18 years
- 93% graduation rate
 - 32% International; Home countries include:
 Kenya, Nigeria, South Africa, Ghana, Ethiopia, Malawi,
 Zimbabwe, India, Pakistan
- 20% continued to Ph.D.s
- 11% progressed to Ed.D. M.D., PharmD, J.D.
- Claflin invested \$736,000 USD over 18 YRS in Stipends/Tuition

Course Delivery

- Fully Online
 - available *EVERYWHERE*
 - 10 courses over 2 years

Pre-Requisites:

Bachelors of Science Degrees in

Biology,

Chemistry,

Environmental Science

or related fields

From a Range of Locations

Mutare, Zimbabwe (Brenda)

Taraba State, Nigeria (Glory)

Nakuru, Kenya (Shepard)

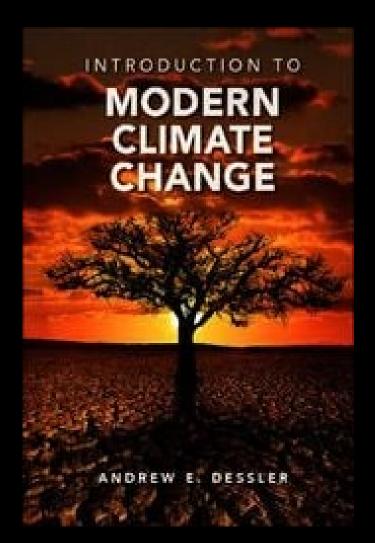
Manilla, Philippines (Desire)

Mozambique (Zaqueu)

Nairobi, Kenya (Nyamongo)

Most of us hope that when the real climate crisis comes,

Some Scientific Discovery Will Save Us


We are Training the scientists of the future

Curriculum

Semester	Title	Credits
Fall I	Introduction to Climate Change	3
Fall I	Genetic Engineering	3
Fall I	Research Ethics	2
Spring I	Emerging Diseases	3
Spring I	Protein Structure, Function, & Design	3
Spring I	Plant Biotechnology	3
Fall II	Mitigation of Climate Change	3
Fall II	Data Science	3
Spring II	Environmental Policy & Management	3
Spring II	Food Security & Safety	3
Spring II	Capstone Experience	1

Introduction to Climate Change

Keystone course taken in the 1st semester 3 Credit Hours

Create a common understanding of modern climate change

- Set the stage for each of the other courses

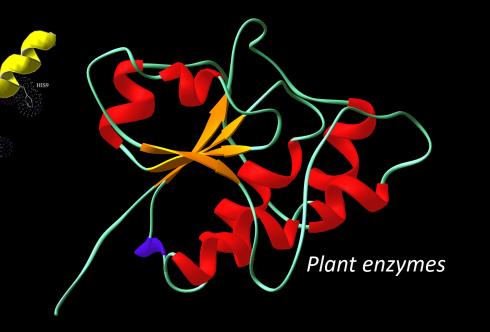
Genetic Engineering I Course

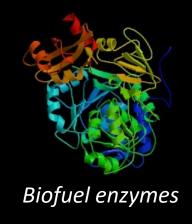
Advanced molecular biology techniques including

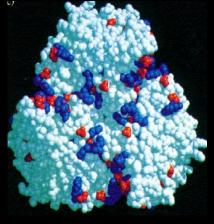
gene cloning
gene modification
CRISPR gene editing

Protein Structure & Design Course

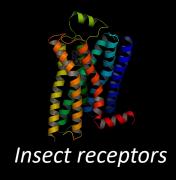
Throughout the course, various protein structures are explored


- active sites detailed


Mosquito Protein-Cecropin A

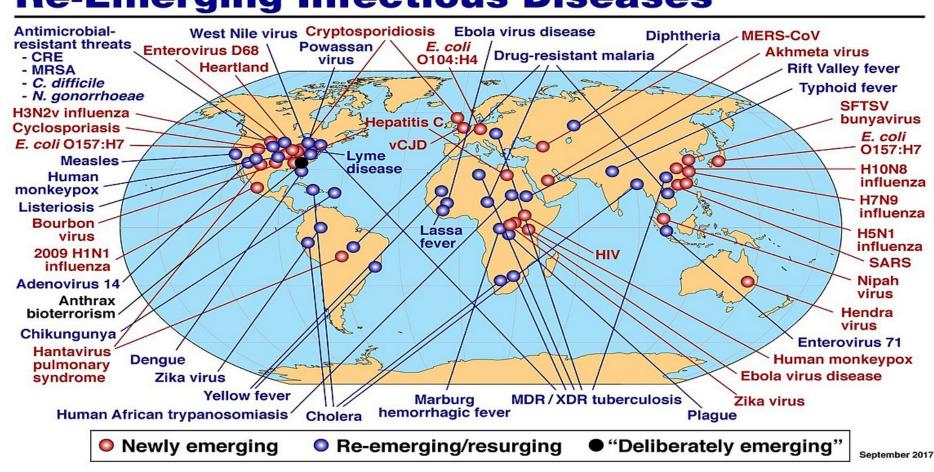

CRSPR/CAS9 malaria resistant

mutant


- structure-function relationships explored

- Proteins may be selected from other courses in the curricula

Measure	Biotechnology	Application	Reference
Climate change mitigation:	Engineering herbicide resistance to reduce spraying	GM soy beans GM canola	Fawcett and Towery, 2003; Brimner et al., 2004; Kleter et al., 2008
Reduced use of fertilizer	Engineering nitrogen fixation	Genetic improvement of Rhizobium; inducing N-fixation to non-legumes	Zahran, 2001; Yan et al., 2008
Carbon sequestration	Green energy	GM energy crops	Lybert and Summer, 2010


	Nitrogen- efficient GM crops	N-efficient GM canola	Johnsona et al., 2007
Adaptation to climate change:	Molecular marker assisted breeding for stress resistance	Drought resistant maize, wheat hybrids	Wang et al., 2001, 2003 Hong et al., 2000;
Adaptation to biotic and abiotic stresses	Engineering drought tolerance	GM Arabidopsis , Tobacco, maize, wheat, cotton, soybean	Jaglo et al., 2000; Yamanouchi et al., 2002
	Engineering salt tolerance	Drought resistant Pearl millet GM tomato, rice	Hsich et al., 2002;
	Engineering heat tolerance	GM Arabidopsis, GM <i>Brassica</i> Sp.	Jaglo <i>et al.</i> , 2001; Zhu, 2001.

Food Security Course

Emerging Diseases Course

Global Examples of Emerging and Re-Emerging Infectious Diseases

Capstone Project

Students present a detailed Scientific Proposal to use a biotechnological application to mitigate a specific Climate Change related problem.

Proposal must address indigenous regulations, policies, and politics

This proposal may be done independently or in partnership with a program professor, home institution, industry sponsor, or in conjunction with their current employer if applicable.

Why We Are Here Today

We had to turn away >20 international applicants for lack of funds

Modest tuition required (USD 15,000 total for 2 years)

WE NEED SUPPORTERS OF INTERNATIONAL SCHOLARSHIPS

Student testimonial: Zaqueu (Mozambique)

Student testimonial: Glory (Nigeria)

Student testimonial: Nyamongo (Kenya)

Thank You!

Questions?

npanasik@claflin.edu 803 535-5535